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A physicomathematical model of dispersion and homogenization in a liquid–liquid medium which is based on
the system of equations for the probability density of the size of disperse particles has been developed. The
proposed model takes into account the processes of turbulent atomization and cavitation reduction in size and
the process of coalescence of the dispersed-phase drops.

The results of theoretical investigation into the processes of dispersion and homogenization of liquid–liquid
systems enjoy wide practical application in various industries (milk, paint and varnish, chemical, and cosmetic), since
emulsions treated in such a way are more slowly segregated and retain their macroscopic homogeneity for a longer
time. Study of the dispersion of these systems is a complex practical and theoretical problem because of the need to
take into account the competing processes of atomization and coalescence of disperse components.

Analyzing the available hypotheses and theories [1–4], one can single out the following basic features of the
process of homogenization. First, the dispersion of drops is practicable only in the case where they are in a readily
deformable liquid state. Second, by means of deformation, the drops must be brought into a thermodynamically unsta-
ble state where the process of spontaneous atomization can occur under the action of surface forces which tend to de-
crease the phase interface. Third, considerable deformation of the drops is possible only for rather high local gradients
of velocity or in the presence of cavitation impacts in the medium. Cavitation atomization occurs because of the for-
mation and collapse of gasdynamic nuclei immediately inside the drop on a sharp local decrease and then recovery of
the pressure in the flow. With low volume concentrations of dispersion, cavitation impacts mainly destabilize the in-
terface from the outside and are the factor which accompanies turbulence.

An important component of the process of homogenization in liquid–liquid systems is the process of coales-
cence, which depends on the diffusion rate of disperse particles in the medium and on the structural-mechanical prop-
erties of the interface.

Criterion of Atomization of Drops in a Turbulent Flow. Atomization of drops in a turbulent liquid flow
occurs in the case where the intensity of turbulent pulsations of the velocity of a dispersing liquid exceeds a certain
critical value, which is different for various drop sizes. In other words, for the turbulent field (of prescribed intensity)
of the dispersing liquid there is such a size of the liquid drops in the dispersed liquid that the drops with a radius
larger than the critical one can be atomized.

Using the data of [5] as the basis, we write the following expression for the critical radius of the drop:
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where σ is the surface tension coefficient of the dispersed liquid, kf is the coefficient of resistance of the moving drop
in the liquid, kf = 0.5, and ∆u is the characteristic difference in the pulsation velocities of the medium at a distance of
the order of the drop diameter.

A formula for the critical radius of the drop can be written in terms of the function Px(r), which describes
the energy distribution of turbulent velocity pulsations over different scales of length r [6]:
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Equation (2) allows us to calculate acr(x) as a function of the longitudinal coordinate for a homogenizer path. Then
the atomization condition has the form

r > acr (x) . (3)

The function Px(r) can be defined from the closed equation given in [6].
Criterion of Cavitation Atomization of Drops in the Flow. The efficiency of homogenization in the pres-

ence of conditions for cavitation depends on the number of cavitation impacts and on the number of disperse inclu-
sions that pass through the zone of action of these impacts. Cavitation in the turbulent flow can appear because of the
turbulent pressure pulsations in the liquid when the negative phase of pulsation pressure is realized. The pressure pul-
sations Bp′p′(x) can be determined in terms of the function that describes the turbulent-energy distribution over different
scales of length Px(y) [7]:

Bp′p′ (x) = 2ρ2
 ∫ 
0

∞

yPx (y)
2
 dy . (4)

With account for this formula the cavitation criterion in the liquid flow will have the form

Bp′p′ (x) > p
_ 2

 (x) . (5)

Using the Θ function of Heaviside we can supplement the equation for fx(r) with a source term which provides the
appearance of drops at the points of the flow where condition (5) is satisfied. This source will simulate the influence
of cavitation on the process of homogenization.

Derivation of the Equation for fx(r). We write the equation for the probability-distribution function of the
radii of the dispersed phase fx(r) in the case where in the turbulent flow the drops of the disperse liquid are reduced
in size as a result of turbulent atomization and cavitation. The process of coalescence will not yet be taken into ac-
count.

Let us subdivide the entire spectrum of the drops by size into a macrocomponent and a microcomponent. The
fraction of the drops with radii less than r will be called the microcomponent of the disperse flow (Mi), while the
fraction with radii larger than r will be called the macrocomponent (Ma)

 ∫ 
0

r

fx (r) dr = Mi ,   ∫ 
r

∞

fx (r) dr = Ma . (6)

Now we write the equality
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u 
∂
∂x

 ∫ 
r

∞

fx (R) dR = − W (r, x) . (7)

Here, the probability flow through the point r in the drop-size space is denoted by the symbol W(r, x). From the form
of equality (7) with allowance for the fact that we try to describe only the process of reduction of the drops in size
it follows that the function W(r, x) > 0.

We assume that the structure of the probability flow W(r, x) is related to the probability density fx (r) by the
formula

W (r, x) = ∫ 
r

∞

fx (R) 
ω̂i (r, R)
τi (R)

 dR . (8)

Here ω̂i(r, R), i = 1, 2, denotes, the probability of transfer of the macrocomponent Ma to the microcomponent Mi
through the point r in the drop-size space. The functions τi(R), i = 1, 2, describe the characteristic time of atomization
of the drop with radius R into the drops of size r < R.

The time of breaking of a drop because of the interaction with the turbulent pulsations of the main liquid
τ1(R) can be evaluated by assuming that it is equal to the time in which the liquid, related to the velocity pulsation
∆u(2R), traverses a distance equal to the diameter of the considered drop:

τ1 (R) = 2R ⁄ s∆u (2R)2t1
 ⁄ 2 = 2R  ⁄ 
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The time of breaking of a bubble related to the cavitation process τ2(R) is evaluated in another way. We
evaluate the characteristic time of cavitation breaking of the drop by taking it to be equal to the time of collapse of
a cavern. The results obtained from the Rayleigh theory contain the following expression [8]:

τcol (R) = 0.91Rcav √ρ ⁄ p∞  . (10)

Assuming that the radius of the cavern is approximately equal to that of the considered drop of the disperse liquid and
that p∞ = p

_
 (x), we obtain

τ2 (R) = τcol = 0.9R √ρ ⁄ p
_

 (x)  . (11)

Let us consider the functions ω̂i(r, R), i = 1, 2, in expression (8). They describe the probability of transfer of
the macrocomponent to the microcomponent through the point r in the drop-sizes space as a result of the turbulent at-
omization (with i = 1) and cavitation explosion of the drop (with i = 2). The function ω̂i(r, R) is represented in the
form

ω̂i (r, R) = ∫ 
0

r

ωi (r
~, R) dr~ . (12)

Here, the functions ω̂i(r~, R) describe the contribution of the occurrence probability of event R → r~ to the total prob-
ability of transition from R to the microcomponent [0−r]. Equality (12) implies that the probability of atomization of
the drop with radius R into the drops with radius r~ < r consists of a sum of probabilities of all the transitions R → r~,
where r~ ∈  [0−r].

For the function ω̂1(r~, R) we obtain the condition

ω̂1 (R, R) = Θ [R − acr (x)] , (13)
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which implies that the probability of turbulent atomization of the drop with radius R into smaller drops on satisfaction
of the condition of turbulent atomization (3) is a reliable event. At the same time, if the drops are of R < acr(x) in
size, no turbulent atomization occurs at this point at all.

We substitute expression (12) with i = 1 into formula (8) and rewrite equality (7) in the form

u 
∂
∂x
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∞

fx (R) dR = − ∫ 
r

∞
fx (R)
τ1 (R)

 ∫ 
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r

ω1 (r~, R) dr~dR . (14)

Differentiation of the left- and right-hand sides of equality (14) with respect to the variable r gives
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For the cavitation mechanism of atomization there is no limitation on the value of the drop radius, i.e., on
satisfaction of criterion (5) a drop of any size can be atomized because of the collapse of the cavitation cavern with
an intensity determined by the characteristic time τ2(R). Therefore, for the cavitation mechanism of atomization the
contribution to the right-hand side of the equation for fx(r) will have the form
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Combining the right-hand sides of Eqs. (15) and (16), we obtain
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(17)

Let us pass to the problem concerning the structure of the functions ωi(r, R). Taking into consideration the
qualitative experimental indications that in regimes with small distinctions of the Weber number from its critical value
the drop is subdivided mainly into two large fragments [9], we accept the hypothesis that the function ω1(r, R) de-
scribes the turbulent atomization of drops mainly into two equal portions. Other possibilities are not eliminated but
they decrease in conformity with the normal law of probability distribution as the asymmetry of subdivision of the
drop increases. The maximum contribution to the rate of growth of the function fx(r) in the space of the drop radii r
occurs as a result of the atomization of the drops with radius R mainly into two equal drops, i.e., with R = 

3√2r ; there-
fore,

ω1 (r, R) = 
1

N1
 exp 




−  r − R ⁄ 

3
√2  

2
 ⁄ 2σ1r

2 


 , (18)

where σ1r is the variance of the probability distribution that is selected so that at the boundary of the domain of defi-
nition by the variable r (r = R, r = 0) the function ω1(r, R) is small. With allowance for the "rule of three sigmas" we
obtain that σ1r = 0.06R.

In the case of cavitation atomization of the drop, the function ω2(r, R) describes the method of reduction of
the dispersed phase in size under the action of cavitation impacts, i.e., because of the collapse of the cavitation cavern
and the explosion of the drop of radius R. We accept the hypothesis that with such an event the initial drop is broken
into n drops of smaller size. As in the case of reduction in size due to turbulent atomization, we will assume that the
asymmetric subdivision of a drop into n drops of smaller radius is also possible but the probability of these events
decreases with increase in the asymmetry of atomization of the drop in conformity with the normal law of probability
distribution. With consideration of the aforesaid, the form of the function ω2(r, R) will take the form
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ω2 (r, R) = 
1

N2
 exp 
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3
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2
 ⁄ 2σ2r

2 


 . (19)

The value of the variance σ2r must be selected to be rather small so that at the boundary of the domain defined by r
(r = 0, r = R) the function ω2(r, R) is close to zero. Using the "rule of three sigmas," we obtain σ2r ≤ 0.06R.

The normalization factor Ni can be calculated from the condition

 ∫ 
0

R

ωi (r, R) dr = 1 . (20)

Integration with respect to r in Eqs. (18) and (19) leads to the formula
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where

Φ (x) = 
2

√π
 ∫ 
0

x

exp (− t
2) dt ,   n1 = 2 ,   n2 = 8 .

Now we write the equation for the function fx(r) that takes into account only the coalescence of the dispersed-
phase drop. As a starting point we use the Smoluchowski–Mu

..
ller equation for the function ϕ(v, x) describing the volu-

metric distribution of the particles [10]

u 
∂ϕ (v, x)

∂x
 = 

1
2

 ∫ 
0

v

β (v − v1, v1) ϕ (v − v1, x) ϕ (v1, x) dv1 − ϕ (v, x) ∫ 
0

v

β (v, v1) ϕ (v1, x) dv1 , (22)

where the function β(v1, v2) is the frequency of pair collisions of the particles of volumes v1 and v2, respectively. The
function ϕ(v, x) is defined in such a way that the integral with respect to the variable v of this function gives the total
number of particles N in the disperse system. The function Ψ(v, x) normalized to unity will be defined by the formula

Ψ (v, x) = ϕ (v, x) ⁄ N (x) . (23)

Using Eq. (23), we obtain the equality

u 
∂Ψ (v, x)

∂x
 = 

u

N (x)
 
∂ϕ (v, x)

∂x
 − u 

ϕ (v, x)

N
2
 (x)

 
∂N (x)

∂x
 . (24)

By expressing the function ϕ(v, x) in terms of Ψ(v, x) using formula (23) and with account for Eq. (22), we write the
equation for the function Ψ(v, x):
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∂Ψ (v, x)

∂x
 = N (x) 











1
2

 ∫ 
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v

β (v − v1, v1) Ψ (v − v1, x) Ψ (v1, x) dv1 −

− Ψ (v, x) ∫ 
0

v

β (v, v1) ϕ (v1, x) dv1










 − u 

∂Ψ (v, x)

N (x)
 
∂N (x)

∂x
 . (25)

To pass from the volume of the drops to the radii, we use the equalities
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Ψ (v, x) dv = fx (r) dr ,   fx (r) = 
dv
dr

 Ψ (v, x) ,   v = 
4
3

 πr
3
 .

As a result, we obtain the following equation for fx(r):
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β (r3
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N (x)
 
∂N (x)
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 . (26)

The function N(x) can be defined in terms of fx(r) as

N (x) = V (x) ⁄ Vm (x) = V (x) ⁄ 
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3

 π ∫ 
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∞

r
3
fx (r) dr







 . (27)

In Eq. (26), the function β(r3, r1
3) has the meaning of the frequency of pair collisions of the drops in the dis-

perse liquid. A qualitative analogy between turbulent and Brownian diffusions allows us to write the expression for the
function β(r3, r1

3) in the following form [11]:

β (r3
, r1

3) = 4π [Dt (r, x) + Dt (r1, x)] (r + r1) , (28)

here Dt(r, x) is the differential coefficient of turbulent diffusion that can be expressed in terms of the function Px(r)
[12]

Dt (r, x) = δ ∫ 
r

∞

(r~ Px (r
~))1

 ⁄ 2 dr~ , (29)

where δ is the coefficient accounting for a possible increase in the diffusion of the drops in the case where the density
of the drop is lower than that of the surrounding liquid.

The above-described processes of atomization and coalescence of the dispersed phase in the turbulent liquid
flow occur simultaneously. Combining the right-hand sides of the equation for this function with allowance for the
phenomena of coalescence, turbulent atomization, and reduction of the dispersed phase in size because of hydrody-
namic cavitation, we write the resulting equation
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r

∞
fx (r)

τ1 (R)
 ω1 (r, R) dR − 

fx (r)

τ2 (r)
 ∫ 
0

r

ω2 (r~, r) dr~ + ∫ 
r

∞
fx (R)

τ2 (R)
 ω2 (r, R) dR . (30)

The function Px(r) that describes the energy distribution over the scales of length r is calculated from the
equation [6]
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2
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 , (31)

here ε is the rate of pumping of the turbulent energy due to the averaged-velocity field and γ = const = 0.24.
The equation for the function fx(r) will be solved later on.
This work was carried out with support from the Belarusian Republic Foundation for Basic Research (grant
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NOTATION

p, density of the dispersing liquid; L, turbulence macroscale; x, longitudinal coordinate of the homogenizer
path; y, transverse coordinate of the homogenizer path; p

_
(x), mean pressure at the point x of the homogenizer path;

µ, mean velocity over the flow; Θ(x), Heaviside step function; Rcav, radius of the cavern; p∞, pressure in the dispers-
ing liquid; V(x), total volume of the disperse liquid; Vm(x), mean volume of the drop; v, kinematic viscosity. Sub-
scripts: cr, critical; t, turbulent; col, collapse; cav, cavern; m, mean; f, force.
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